Как правильно варить химию из травы


Как сделать химку из конопли – Telegraph

Как сделать химку из конопли

Как сделать химку из конопли

Купить Здесь

Switch to English sign up. Хочу не много объяснить что такое 'Химка' и почему она приносит вред. Химка это народное название конопли из которой химическим путём добывают ТГК Тетрогидроканабинол. На самом деле она не так уж и вредна, то есть вред тот же что и от природы. Если пользоватся нормальным отмыванием, без всяких растворителей в которые входит вся таблица Минделеева. Вообще химка это не целая система вываривания травы. Её можно сделать из чего угодно, но лучше из дички. Вообще процес выварки я росскажу дальше, но прикол в том что при выварке химаря мы просто достаём из непрущей шалы ТГК то есть масла и стераем их той же дичкой или табаком. Один хрен эфект тот же, как и с мокрого сдирать остатки хорошо прожитых времён. Простой и доступный способ приготовления. Химка - это сленговое название экстракта веществ, которые оказывают определённое действие, из конопли. Отходом, в данном случае, является конопляный жмых не содержащий каких либо полезных, для нас, веществ. А продуктом - малое количество вещества с концентрированным содержанием ТГК и прочих интересных моментов. Химку, как правило, делают из сравнительно беспонтовой травы. Например та, которой нужно пару косяков, чтоб немного зацепило, путём не сложных манипуляций превращается в две хапки убийственной ганджи. Если имеется трава более высокого качества, то в результате у вас без проблем может получится офигенный гашиш. Ингредиенты, которые нам понадобятся для приготовления химки из конопли. Процесс экстракции - Хорошенько измельчить траву, засыпать её в предварительно приготовленную кастрюлю, залить необходимое количество растворителя. Накрываем её чашкой с холодной водой. Постоянно меняем в чашке воду, что бы она была холодной. Сливаем полученную жидкость в керамическую миску или кружку. Температура, при выпаривании, не должна превышать ста градусов по Цельсию. Готовность продукта необходимо определить на глаз и приходит это знание только с опытом. Жидкость должно быть очень густой. Цвет должен стремиться к черному. Продукт не должен пахнуть растворителем. Чрезвычайно важный момент - не передержать. Как только пропал запах - прекращаем выпаривание. На этом этапе важно помнить, что очищенный бензин чрезвычайно воспламеним. Всё должно быть предельно холодным. Каждое действие максимально аккуратным. После того, как поставили в холодильник мешать и взбалтывать нельзя. Средний и нижний нам не понадобится. Его можно вылить в унитаз. Выпариваем на низкой температуре. На данном этапе так же очень важно не передержать. С опытом это придёт. Затирание - Потрошим беломорины. Табак тщательно просушиваем до хрустящего состояния. Это очень важно, иначе ничего не получится. Удачи в начинаниях и всегда помните, что осторожность и аккуратность это наше всё. Это современный способ, а на самом деле делают на газу, так нитратов почти нет. Проверенный продавец на рынке! Фемки, Регуляры , Автоцветы , все в заводской упаковке. Лучшее качество на рынке Наш сайт: Купить семена конопли в интернет-магазине Pakaloco pakaloco. А что если эту же траву просушенную оптереть а не тобак? Представляем вашему вниманию, группу посвященную марихуане Cannabis. В ней вы найдете все что касается марихуаны. Опытные гроверы, готовы ответить на ваш любой вопрос. А редакторы готовы порадовать вас свежими новостями,видео,аудио. Like 1 Show likes 3 Jul Ктото знает это работает или на подобие спайсухи!? Like 1 Show likes 15 Aug at This Ifava replied to Dmitry. Дмитрий , пробовал как-то, лучше манаги сварить чем химарь.

Как сделать химку из конопли

Глава 8.3. Продукты из конопли

Зазор доступ

Рецепт на трамал

Пыль (конопля)

Закладки спайс казань

Как сделать химку из конопли

Через сколько отпускает трава

СФК Grower - Выращивание конопли в деталях. Все о выращивании марихуаны

Как сделать химку из конопли

Частные объявления трамадол николаев 2015

Как сделать химку из конопли

Molot24 cc zazor

Глава 8.3. Продукты из конопли

В зависимости от способа приготовления, гашиш может представлять собой либо прессованную пыльцу конопли см. Гашиш не следует путать с марихуаной , так как марихуана - это растение, а гашиш - это вещество, субстанция, которое является производным марихуаны. Как правило, гашиш отличается от высушенной марихуаны гораздно более сильным психоактивным действием, получаемым за счет большей концентрации в нем психоактивных веществ, главным образом - дельтатетрагидроканнабинола. В Индии для получения гашиша с особо высоким содержанием веществ с глубокой древности применяется следующий способ: Далее внизу шкуры делается отверстие для выхода смолы, и шкура закапывается на некоторое время. Ещё один классический способ производства гашиша: Самые мелкие фракции прессуют в брикеты. Гашиш употребляют перорально либо курят: По действию гашиш значительно отличается от марихуаны: При курении гашиш действует менее длительно, чем марихуана , в связи с чем чаще возникает потребность в дополнительной дозе. Как более концентрированный препарат, гашиш обладает большим потенциалом к формированию зависимости и гашишных психозов , чем обычная марихуана. Тем не менее, такие случаи крайне редки и не наблюдаются. Продукт афганского и пакистанского происхождения может содержать некоторое количество опиума ; в этом случае возможны дополнительные эффекты тактильные иллюзии, мыслительная и речевая заторможенность, абстиненция с головной болью и ломотой в теле. Зависимость от такого продукта возникает значительно быстрее и может иметь физический характер. Крупнейшей страной-экспортёром гашиша является Марокко: Хаки , высший сорт пенджабского гашиша. Изготовляется из пыли , прилипшей к ткани во время просева. Имеет соответствующий серо-зеленый цвет. Остающийся в осадке чёрный липкий порошок содержит значительное количество ТГК и может быть сформован в кубики, шарики или пластинки наподобие гашишных. Как и натуральный гашиш, она может употребляться перорально или для приготовления сладостей и напитков. Конопля — Cannabis L. Женские растения называются у нас матка, матерка, конопля собственно, а мужские посконь и пр. Шишки конопля — Культивация, или выращивание конопли может производиться с разными целями. Основным носителем сленга стала молодёжь, заинтересовавшаяся наркотиками. Общие требования оригинал документа: Магазин гашиша в Катманду , Непал , до запрета наркотиков королём Бирендрой. Смотреть что такое 'Пыль конопля ' в других словарях: Ефрона Шишки конопля — Культивация, или выращивание конопли может производиться с разными целями. Экспорт словарей на сайты , сделанные на PHP,. Пометить текст и поделиться Искать в этом же словаре Искать синонимы Искать во всех словарях Искать в переводах Искать в Интернете Искать в этой же категории. Поделиться ссылкой на выделенное Прямая ссылка:

Спайс владивосток закладки

Как сделать химку из конопли

Как курить бошки без трубки

СФК Grower - Выращивание конопли в деталях. Все о выращивании марихуаны

Как сделать химку из конопли

Донецк курительные смеси

СФК Grower - Выращивание конопли в деталях. Все о выращивании марихуаны

Обход https

Как сделать химку из конопли

Маковые семечки

Глава 8.3. Продукты из конопли

Как сделать химку из конопли

Drugvader biz

Как приготовить говядину травяного откорма

Как приготовить говядину травяного откорма | EatingWell

Верхняя навигация

близко

Просмотреть изображение

Как приготовить говядину травяного откорма

эта ссылка ведет на внешний сайт, который может соответствовать или не соответствовать правилам доступности.

,

Основы зеленой химии | Зеленая химия

На этой странице:

Определение зеленой химии

Зеленая химия - это разработка химических продуктов и процессов, которые сокращают или исключают использование или образование опасных веществ. Зеленая химия применяется на протяжении всего жизненного цикла химического продукта, включая его проектирование, производство, использование и окончательную утилизацию. Зеленая химия также известна как устойчивая химия.

Зеленая химия:

  • Предотвращает загрязнение на молекулярном уровне
  • Это философия, которая применима ко всем областям химии, а не к какой-либо одной химической дисциплине.
  • Применяет инновационные научные решения к реальным экологическим проблемам
  • Приводит к сокращению количества источников, поскольку предотвращает загрязнение.
  • Снижает негативное воздействие химических продуктов и процессов на здоровье человека и окружающую среду
  • Уменьшает, а иногда и устраняет опасность от существующих продуктов и процессов
  • Разрабатывает химические продукты и процессы для снижения внутренней опасности

Начало страницы

Чем зеленая химия отличается от очистки загрязнения

Зеленая химия снижает загрязнение в его источнике за счет сведения к минимуму или устранения опасностей, связанных с химическим сырьем, реагентами, растворителями и продуктами.

Это не похоже на очистку от загрязнения (также называемую восстановлением), которая включает обработку потоков отходов (обработка на конце трубы) или очистку от разливов в окружающей среде и других выбросов. Восстановление может включать отделение опасных химикатов от других материалов, затем их обработку, чтобы они больше не представляли опасности, или их концентрацию для безопасной утилизации. Большинство восстановительных мероприятий не связаны с зеленой химией. Рекультивация удаляет опасные материалы из окружающей среды; с другой стороны, «зеленая химия» в первую очередь предотвращает попадание опасных материалов в окружающую среду.

Если технология снижает или устраняет опасные химические вещества, используемые для очистки загрязнителей окружающей среды, эта технология будет квалифицироваться как технология зеленой химии. Одним из примеров является замена опасного сорбента [химического вещества], используемого для улавливания ртути из воздуха для безопасного удаления, на эффективный, но неопасный сорбент. Использование неопасного сорбента означает, что опасный сорбент никогда не производится, и поэтому технология восстановления соответствует определению зеленой химии.

Начало страницы

12 принципов зеленой химии

Эти принципы демонстрируют широту концепции зеленой химии:

1. Предотвращение образования отходов : Разработайте химический синтез для предотвращения образования отходов. Не оставляйте отходов для обработки или очистки.

2. Максимизируйте атомную экономию : Спроектируйте синтез таким образом, чтобы конечный продукт содержал максимальную долю исходных материалов. Выбросьте мало атомов или совсем их.

3. Разработать менее опасные химические синтезы : Спроектировать синтез для использования и производства веществ с небольшой или нулевой токсичностью для человека или окружающей среды.

4. Создавайте более безопасные химические вещества и продукты. : Создавайте химические продукты, которые будут полностью эффективными, но при этом имеют небольшую токсичность или не имеют ее.

5. Используйте более безопасные растворители и условия реакции. : Избегайте использования растворителей, разделительных агентов или других вспомогательных химикатов. Если вам необходимо использовать эти химические вещества, используйте более безопасные.

6. Повышение энергоэффективности : По возможности проводите химические реакции при комнатной температуре и давлении.

7.Используйте возобновляемое сырье. : Используйте исходные материалы (также известные как сырье), которые являются возобновляемыми, а не истощаемыми. Источником возобновляемого сырья часто являются сельскохозяйственные продукты или отходы других процессов; Источником истощаемого сырья часто является ископаемое топливо (нефть, природный газ или уголь) или добыча полезных ископаемых.

8. Избегайте химических производных : Избегайте использования блокирующих или защитных групп или любых временных модификаций, если это возможно. Производные используют дополнительные реагенты и образуют отходы.

9. Используйте катализаторы, а не стехиометрические реагенты. : Минимизируйте количество отходов, используя каталитические реакции. Катализаторы эффективны в небольших количествах и могут проводить одну реакцию много раз. Они предпочтительнее стехиометрических реагентов, которые используются в избытке и проводят реакцию только один раз.

10. Создавайте химические продукты и продукты, которые разлагаются после использования. : Создавайте химические продукты, которые после использования разлагаются на безвредные вещества, чтобы они не накапливались в окружающей среде.

11. Анализируйте в реальном времени, чтобы предотвратить загрязнение. : Включите внутрипроцессный мониторинг и контроль в реальном времени во время синтеза, чтобы минимизировать или исключить образование побочных продуктов.

12. Сведите к минимуму вероятность аварий. : Разработайте химические вещества и их физические формы (твердые, жидкие или газообразные), чтобы минимизировать вероятность химических аварий, включая взрывы, пожары и выбросы в окружающую среду.

Начало страницы

Двенадцать принципов зеленой химии закладки

Загрузите одностороннюю или двустороннюю закладку, демонстрирующую двенадцать принципов зеленой химии.

Начало страницы

Корни зеленой химии в Законе о предотвращении загрязнения 1990 г.

Прекращение загрязнения окружающей среды стало официальной политикой Америки в 1990 году с принятием Федерального закона о предотвращении загрязнения.

Закон определяет сокращение источника как любую практику, которая:

  • Снижает количество любых опасных веществ, загрязнителей или загрязняющих веществ, попадающих в поток отходов или иным образом выброшенных в окружающую среду (включая неконтролируемые выбросы) перед переработкой, обработкой или удалением.
  • Снижает опасность для здоровья населения и окружающей среды, связанную с выбросом таких веществ, загрязнителей или загрязняющих веществ.

Термин «сокращение источника» включает:

  • Модификации оборудования или технологий
  • Изменения в процессе или процедурах
  • Модификации, переформулировка или переработка продукции
  • Замена сырья
  • Улучшения в ведении домашнего хозяйства, техобслуживании, обучении или управлении запасами

Раздел 2 Закона о предотвращении загрязнения устанавливает иерархию предотвращения загрязнения, говоря:

  • Конгресс настоящим заявляет, что в качестве национальной политики Соединенных Штатов следует предотвращать или сокращать загрязнение у источника, когда это возможно;
  • Загрязнение, которое невозможно предотвратить, следует перерабатывать экологически безопасным способом, когда это возможно;
  • Загрязнение, которое невозможно предотвратить или переработать, следует обрабатывать экологически безопасным способом, когда это возможно;
  • Удаление или другие выбросы в окружающую среду должны использоваться только в крайнем случае и должны осуществляться экологически безопасным способом.

Зеленая химия направлена ​​на разработку и производство конкурентоспособных по стоимости химических продуктов и процессов, которые достигают самого высокого уровня в иерархии предотвращения загрязнения за счет сокращения загрязнения в его источнике.

Для тех, кто создает и использует зеленую химию, иерархия выглядит так:

  1. Снижение источников и предотвращение химических опасностей
    • Разработка химических продуктов, снижающих опасность для здоровья человека и окружающей среды *
    • Изготовление химических продуктов из сырья, реагентов и растворителей, которые менее опасны для здоровья человека и окружающей среды *
    • Проектирование синтезов и других процессов с уменьшением или даже без химических отходов
    • Разработка синтезов и других процессов, использующих меньше энергии или воды
    • Использование сырья, полученного из ежегодно возобновляемых ресурсов или из обильных отходов
    • Разработка химической продукции для повторного использования или переработки
    • Повторное использование или переработка химикатов
  2. Обработка химикатов для снижения их опасности перед утилизацией
  3. Безопасная утилизация необработанных химикатов и только в том случае, если другие варианты невозможны

* Менее опасные для здоровья человека и окружающей среды химические вещества:

  • Менее токсичен для организмов
  • Меньше вреда для экосистем
  • Не стойкий или биоаккумулирующийся в организмах или окружающей среде
  • По своей природе более безопасны в обращении и использовании, поскольку они негорючие или взрывоопасные

Начало страницы

,

Что такое химия? | Живая наука

Вы можете думать о химии только в контексте лабораторных тестов, пищевых добавок или опасных веществ, но область химии включает в себя все, что нас окружает.

«Все, что вы слышите, видите, обоняние, вкус и прикосновение, связано с химией и химическими веществами (материей)», согласно Американскому химическому обществу (ACS), некоммерческой научной организации по развитию химии, учрежденной США. Конгресс. "А слышание, видение, дегустация и прикосновение - все это связано с запутанной серией химических реакций и взаимодействий в вашем теле."

Итак, даже если вы не работаете химиком, вы занимаетесь химией или чем-то, что связано с химией, практически со всем, что вы делаете. В повседневной жизни вы занимаетесь химией, когда готовите, когда используете уборку. моющие средства, чтобы вытереть столешницу, когда вы принимаете лекарства или разбавляете концентрированный сок, чтобы вкус не был таким интенсивным.

Связанный: Вау! Огромный взрыв сахарной ваты в детской химической лаборатории

Согласно ACS, химия - это изучение материи, определяемой как все, что имеет массу и занимает пространство, а также изменения, которые материя может претерпеть, когда она находится в различных средах и условиях.Химия стремится понять не только свойства материи, такие как масса или состав химического элемента, но также то, как и почему материя претерпевает определенные изменения - трансформировалось ли что-то из-за того, что оно соединилось с другим веществом, замерзло, потому что оно было оставлено на две недели в морозильник или изменил цвет из-за слишком большого количества солнечного света.

Основы химии

Причина, по которой химия затрагивает все, что мы делаем, заключается в том, что почти все, что существует, можно разбить на химические строительные блоки.

Основными строительными блоками в химии являются химические элементы, которые представляют собой вещества, состоящие из одного атома. Каждое химическое вещество уникально, состоит из определенного количества протонов, нейтронов и электронов и идентифицируется по названию и химическому символу, например «C» для углерода. Элементы, которые ученые обнаружили на данный момент, перечислены в периодической таблице элементов и включают как элементы, встречающиеся в природе, такие как углерод, водород и кислород, так и созданные человеком, например Лоуренсий.

Связанный: Как элементы сгруппированы в периодической таблице?

Химические элементы могут соединяться вместе, образуя химические соединения, которые представляют собой вещества, состоящие из нескольких элементов, таких как диоксид углерода (который состоит из одного атома углерода, соединенного с двумя атомами кислорода), или нескольких атомов одного элемента, как газообразный кислород (который состоит из двух атомов кислорода, соединенных вместе). Эти химические соединения могут затем связываться с другими соединениями или элементами, образуя бесчисленное множество других веществ и материалов.

Химия - это физическая наука

Химия обычно считается физической наукой в ​​соответствии с определением Британской энциклопедии, потому что изучение химии не связано с живыми существами. Большая часть химии, связанной с исследованиями и разработками, такими как создание новых продуктов и материалов для клиентов, относится к этой сфере.

Но, по мнению Биохимического общества, различие как физическая наука становится немного размытым в случае биохимии, которая исследует химию живых существ.Химические вещества и химические процессы, изучаемые биохимиками, технически не считаются «живыми», но их понимание важно для понимания того, как устроена жизнь.

Химия - это физическая наука, что означает, что она не касается «живых» существ. Один из способов, которым многие люди регулярно занимаются химией, возможно, даже не осознавая этого, - это приготовление пищи и выпечка. (Изображение предоставлено Shutterstock)

Пять основных разделов химии

Согласно онлайн-учебнику химии, опубликованному LibreText, химия традиционно делится на пять основных направлений.Есть также более специализированные области, такие как пищевая химия, химия окружающей среды и ядерная химия, но в этом разделе основное внимание уделяется пяти основным субдисциплинам химии.

Аналитическая химия включает в себя анализ химических веществ и включает качественные методы, такие как изучение изменений цвета, а также количественные методы, такие как изучение точной длины волны света, который поглощается химическим веществом, что приводит к изменению цвета.

Эти методы позволяют ученым охарактеризовать множество различных свойств химических веществ и могут принести пользу обществу разными способами.Например, аналитическая химия помогает пищевым компаниям делать замороженные обеды вкуснее, обнаруживая, как химические вещества в продуктах питания меняются с течением времени. Аналитическая химия также используется для мониторинга состояния окружающей среды, например, путем измерения химических веществ в воде или почве.

Биохимия , как упоминалось выше, использует химические методы, чтобы понять, как биологические системы работают на химическом уровне. Благодаря биохимии исследователи смогли составить карту генома человека, понять, что различные белки делают в организме, и разработать лекарства от многих болезней.

Связано: Раскрытие генома человека: 6 молекулярных вех

Неорганическая химия изучает химические соединения в неорганических или неживых объектах, таких как минералы и металлы. Традиционно неорганическая химия рассматривает соединения, которые не , а содержат углерод (которые охватываются органической химией), но это определение не совсем точное, согласно ACS.

Некоторые соединения, изучаемые в неорганической химии, такие как «металлоорганические соединения», содержат металлы, которые связаны с углеродом - основным элементом, изучаемым в органической химии.Таким образом, такие соединения считаются частью обеих областей.

Неорганическая химия используется для создания множества продуктов, включая краски, удобрения и солнцезащитные кремы.

Органическая химия занимается химическими соединениями, содержащими углерод - элемент, который считается необходимым для жизни. Химики-органики изучают состав, структуру, свойства и реакции таких соединений, которые наряду с углеродом содержат другие неуглеродные элементы, такие как водород, сера и кремний.Органическая химия используется во многих областях, как описано в ACS, таких как биотехнология, нефтяная промышленность, фармацевтика и пластмассы.

Физическая химия использует концепции физики, чтобы понять, как работает химия. Например, выяснение того, как атомы движутся и взаимодействуют друг с другом, или почему некоторые жидкости, включая воду, превращаются в пар при высоких температурах. Физические химики пытаются понять эти явления в очень малом масштабе - на уровне атомов и молекул - чтобы сделать выводы о том, как работают химические реакции и что придает конкретным материалам их уникальные свойства.

Согласно ACS, этот тип исследований помогает информировать другие отрасли химии и важен для разработки продуктов. Например, физико-химики могут изучать, как определенные материалы, такие как пластик, могут реагировать с химическими веществами, с которыми материал предназначен для контакта.

Чем занимаются химики?

Химики работают в различных областях, включая исследования и разработки, контроль качества, производство, защиту окружающей среды, консалтинг и право. Согласно ACS, они могут работать в университетах, в правительстве или в частном секторе.

Вот несколько примеров того, чем занимаются химики:

Исследования и разработки

В академических кругах химики, выполняющие исследования, стремятся получить дополнительные знания по определенной теме и не обязательно имеют в виду конкретное приложение. Однако их результаты все еще могут быть применены к соответствующим продуктам и приложениям.

В промышленности химики, занимающиеся исследованиями и разработками, используют научные знания для разработки или улучшения конкретного продукта или процесса.Например, пищевые химики улучшают качество, безопасность, хранение и вкус пищи; химики-фармацевты разрабатывают и анализируют качество лекарств и других лекарственных форм; а агрохимики разрабатывают удобрения, инсектициды и гербициды, необходимые для крупномасштабного растениеводства.

Иногда исследования и разработки могут включать не улучшение самого продукта, а скорее производственный процесс, связанный с его изготовлением. Инженеры-химики и инженеры-технологи придумывают новые способы сделать производство своей продукции более простым и рентабельным, например, увеличить скорость и / или выход продукта при заданном бюджете.

Охрана окружающей среды

Химики-экологи изучают, как химические вещества взаимодействуют с окружающей средой, характеризуя химические вещества и химические реакции, присутствующие в естественных процессах в почве, воде и воздухе. Например, ученые могут собирать почву, воду или воздух в интересующем месте и анализировать их в лаборатории, чтобы определить, загрязнила ли деятельность человека окружающую среду или повлияет ли она на нее иным образом. Некоторые химики-экологи также могут помочь восстановить или удалить загрязнители из почвы, по словам У.С. Бюро статистики труда.

Связано: Почему удобрения опасны (инфографика)

Ученые, имеющие опыт работы в области химии окружающей среды, также могут работать консультантами в различных организациях, таких как химические компании или консалтинговые фирмы, предоставляя рекомендации о том, как можно выполнять практические действия и процедуры. соответствие экологическим нормам.

Закон

Химики могут использовать свое академическое образование, чтобы давать советы или защищать научные вопросы.Например, химики могут работать в сфере интеллектуальной собственности, где они могут применять свои научные знания к вопросам авторского права в науке, или в экологическом праве, где они могут представлять группы с особыми интересами и подавать заявки на одобрение регулирующих органов до того, как начнутся определенные действия.

Химики также могут выполнять анализы, помогающие правоохранительным органам. Судебные химики собирают и анализируют вещественные доказательства, оставленные на месте преступления, чтобы помочь установить личности причастных к делу людей, а также ответить на другие жизненно важные вопросы о том, как и почему было совершено преступление.Судебные химики используют широкий спектр методов анализа, таких как хроматография и спектрометрия, которые помогают идентифицировать и количественно определять химические вещества.

Дополнительные ресурсы:

.

19 Классные химические реакции, доказывающие, что наука увлекательна

Химия может быть одной из самых завораживающих, но также и опасных наук. Смешивание определенных химикатов может вызвать довольно неожиданные реакции, которые могут быть интересны для демонстрации. Хотя некоторые реакции можно наблюдать ежедневно, например, смешивание сахара с кофе, некоторые требуют контролируемых условий для визуализации эффектов. Но есть некоторые химические реакции, наблюдать за которыми просто потрясающе, и их легко провести в химических лабораториях.

Для вашей безопасности самый простой выход - посмотреть видео с такими впечатляющими химическими реакциями, прежде чем вы подумаете о воспроизведении их, чтобы лучше понять уровень риска и необходимые меры безопасности.

Вот список из 19 самых потрясающих химических реакций, которые доказывают, что наука всегда крута.

1. Полиакрилат натрия и вода

Полиакрилат натрия - это суперабсорбентный полимер. Подводя итог реакции, ионы полимера притягивают воду путем диффузии.Полимер поглощает воду за секунды, что приводит к почти мгновенному превращению в гелеобразное вещество. Именно это химическое вещество используется в подгузниках для поглощения отработанной жидкости. Технически это не химическая реакция, потому что химическая структура не меняется и не происходит реакции с молекулами воды. Скорее, это демонстрация поглощения в макроуровне.

2. Диэтилцинк и воздух

Диэтилцинк - очень нестабильное соединение.При контакте с воздухом он горит с образованием оксида цинка, CO2 и воды. Реакция происходит, когда диэтилцинк вступает в контакт с молекулами кислорода. Химическое уравнение выглядит следующим образом:

Zn (C2H5) 2 + 5O2 → ZnO + 4CO2 + 5h3O

3. Цезий и вода

Источник: Giphy

Цезий - один из наиболее реактивных щелочных металлов. При контакте с водой он реагирует с образованием гидроксида цезия и газообразного водорода. Эта реакция происходит так быстро, что вокруг цезия образуется пузырек водорода, который поднимается на поверхность, после чего цезий подвергается воздействию воды, вызывая дальнейшую экзотермическую реакцию, таким образом воспламеняя газообразный водород.Этот цикл повторяется до тех пор, пока не будет исчерпан весь цезий.

4. Глюконат кальция

Глюконат кальция обычно используется для лечения дефицита кальция. Однако, когда он нагревается, он вызывает огромное расширение молекулярной структуры. Это приводит к образованию пены, напоминающей серую змею, вызванной испарением воды и дегидратацией гидроксильных групп внутри соединения. Говоря менее научным языком, при нагревании глюконат кальция быстро разлагается. Реакция следующая:

2C 12 H 22 CaO 14 + O 2 → 22H 2 O + 21C + 2CaO + 3CO 2

5.Трииодид азота

Вы можете приготовить это соединение дома, но имейте в виду, что это очень опасно. Соединение образуется в результате осторожной реакции йода и аммиака. После высыхания исходных компонентов образуется NI3, который является очень реактивным соединением. Простое прикосновение пера вызовет взрыв этого опасного контактного взрывчатого вещества.

6. Дихромат аммония

Когда дихромат аммония воспламеняется, он разлагается экзотермически с образованием искр, золы, пара и азота.

7. Перекись водорода и иодид калия

Когда перекись водорода и иодид калия смешиваются в надлежащих пропорциях, перекись водорода разлагается очень быстро. В эту реакцию часто добавляют мыло, чтобы в результате образовалось пенистое вещество. Мыльная вода улавливает кислород, продукт реакции, и создает множество пузырьков.

8. Хлорат калия и конфеты

Мармеладные мишки - это, по сути, просто сахароза.Когда мармеладные мишки попадают в хлорат калия, он вступает в реакцию с молекулой глюкозы в сахарозе, что приводит к сильно экзотермической реакции горения.

9. Реакция Белоусова-Жаботинского (BZ)

Реакция BZ образуется при осторожном сочетании брома и кислоты. Реакция является ярким примером неравновесной термодинамики, которая приводит к красочным химическим колебаниям, которые вы видите на видео выше.

10.Окись азота и сероуглерод

Реакция, часто называемая «лающей собакой», представляет собой химическую реакцию в результате воспламенения сероуглерода и закиси азота. Реакция дает яркую синюю вспышку и очевидный звук глухой. Реагенты реакции быстро разлагаются в процессе горения.

11. Сплав NaK и вода

Сплав NaK - это металлический сплав, образованный смешением натрия и калия вне воздуха, обычно в керосине.Этот чрезвычайно реактивный материал может реагировать с воздухом, но еще более бурная реакция происходит при контакте с водой.

12. Термит и лед

Вы когда-нибудь думали, что смешивание огня и льда может привести к взрыву?

СВЯЗАННЫЕ: 11 ЛУЧШИХ ХИМИЧЕСКИХ КАНАЛОВ НА YOUTUBE

Вот что происходит, когда вы получаете небольшую помощь от Thermite, который представляет собой смесь алюминиевого порошка и оксида металла. Когда эта смесь воспламеняется, происходит экзотермическая окислительно-восстановительная реакция, т.е.е. химическая реакция, при которой энергия выделяется в виде электронов, которые переходят между двумя веществами. Таким образом, когда термит помещается на поверхность льда и воспламеняется с помощью пламени, лед сразу же загорается, и выделяется большое количество тепла в виде взрыва. Однако нет какой-либо убедительной научной теории о том, почему термит вызывает взрыв. Но одно ясно из демонстрационного видео - не пробуйте это дома.

13.Осциллирующие часы Бриггса-Раушера

Реакция Бриггса-Раушера - одна из очень немногих колеблющихся химических реакций. Реакция дает визуально ошеломляющий эффект за счет изменения цвета раствора. Для инициирования реакции смешивают три бесцветных раствора. Полученный раствор будет циклически менять цвет с прозрачного на янтарный в течение 3-5 минут и в итоге станет темно-синим. Три раствора, необходимые для этого наблюдения, представляют собой разбавленную смесь серной кислоты (H 2 SO 4 ) и йодата калия (KIO 3 ), разбавленную смесь малоновой кислоты (HOOOCCH 2 COOH), моногидрат сульфата марганца. (МнСО 4 .H 2 O) и крахмал vitex и, наконец, разбавленный пероксид водорода (H 2 O 2 ).

14. Supercool Water

Возможно, вы не заморозите окружающую среду, как Эльза в фильме «Холодное сердце», но вы определенно можете заморозить воду прикосновением к этому классному научному эксперименту. Эксперимент с супер холодной водой заключается в охлаждении очищенной воды до -24 ° C (-11 ° F). Охлажденную бутылку можно медленно вынуть и постучать по дну или по бокам, чтобы запустить процесс кристаллизации.Поскольку очищенная вода не имеет примесей, молекулы воды не имеют ядра для образования твердых кристаллов. Внешняя энергия, обеспечиваемая в виде крана или удара, заставит молекулы переохлажденной воды образовывать твердые кристаллы посредством зародышеобразования и запустит цепную реакцию по кристаллизации воды по всей бутылке.

15. Феррожидкость

Ферромагнитная жидкость состоит из наноразмерных ферромагнитных частиц, взвешенных в жидкости-носителе, такой как органический растворитель или вода.Изначально обнаруженные Исследовательским центром НАСА в 1960-х годах в рамках исследования по поиску методов контроля жидкостей в космосе, феррожидкости при воздействии сильных магнитных полей будут создавать впечатляющие формы и узоры. Эти жидкости могут быть приготовлены путем объединения определенных пропорций соли Fe (II) и соли Fe (III) в основном растворе с образованием валентного оксида (Fe 3 O 4 ).

16. Гигантский пузырь из сухого льда

Сухой лед всегда является забавным веществом для разнообразных экспериментов.Если вам удастся найти немного сухого льда, попробуйте в этом эксперименте создать гигантский пузырь из простых материалов. Возьмите миску и наполовину наполните ее водой. Смочите жидкое мыло водой и перемешайте. Пальцами намочите края миски и добавьте в раствор сухой лед. Окуните полоску ткани в мыльную воду и протяните ее по всему краю миски. Подождите, пока пары сухого льда не задержатся внутри пузыря, который начнет постепенно расширяться.

17. Змея фараона

Змея фараона - это простая демонстрация фейерверка.Когда тиоцианат ртути воспламеняется, он распадается на три продукта, и каждый из них снова распадается на еще три вещества. Результатом этой реакции является растущий столб, напоминающий змею, с выделением пепла и дыма. Хотя все соединения ртути токсичны, лучший способ провести этот эксперимент - в вытяжном шкафу. Также существует серьезная опасность пожара. Однако самое простое решение - посмотреть видео, если у вас нет доступа к материалам.

18. Эффект Мейснера

Охлаждение сверхпроводника ниже температуры перехода сделает его диамагнитным.Это эффект, при котором объект будет отталкиваться от магнитного поля, а не тянуться к нему. Эффект Мейснера также привел к концепции транспортировки без трения, при которой объект может левитировать по рельсам, а не прикрепляться к колесам. Однако этот эффект также можно воспроизвести в лаборатории. Вам понадобится сверхпроводник и неодимовый магнит, а также жидкий азот. Охладите сверхпроводник жидким азотом и поместите сверху магнит, чтобы наблюдать левитацию.

19. Сверхтекучий гелий

Охлаждение гелия до достижения его лямбда-точки (-271 ° C) сделает его сверхтекучим, известным как гелий II. Эта сверхтекучая жидкость образует тонкую пленку внутри контейнера и будет подниматься против силы тяжести в поисках более теплого места. Тонкая пленка имеет толщину около 30 нм, в ней капиллярные силы превышают силу тяжести, которая удерживает жидкость в контейнере.

.

Смотрите также