Как варят оптоволокно


Монтаж ВОЛС - сварка оптоволокна

Монтаж ВОЛС — сварка оптоволокна

Сварка оптоволокна чем-то напоминает работу ювелира. Если даже подготовка волокон требует большой аккуратности и четкости движений, то что говорить непосредственно о процессе сварки. Только чистые руки, никакой пыли и ни в коем случае не трогаем очищенное волокно пальцами.

Убираем все лишнее и оставляем на рабочем столе:

  1. Скалыватель.
  2. Сварочный аппарат.
  3. Емкость со спиртом, для протирки волокна.Салфетки безворсовые.
  4. Стриппер (для зачистки волокна, если понадобится).
  5. Муфту или кросс (уже подготовленные).
  6. Пинцет.
  7. Изолента (для сбора осколков волокон и крепления переходов в кроссе).

Скалыватель —это механическое высокоточное устройство. Основное назначение — создать как можно более плоскую и перпендикулярную оптоволокну поверхность скола.

Монтаж ВОЛС — сварка оптоволокна

Скалыватель — довольно дорогое устройство. Но его применение полностью оправдано. Вручную разломать оптоволокно пинцетом, или старым советским набором — лезвием и резиновым ластиком — и получить хотя бы сколько-нибудь ровный скол — невозможно. А ведь именно от качества скола зависит качество сварки.

Если вы попытаетесь сварить два не слишком ровно сколотых волокна, то получится примерно такое:

На снимке видно, что поверхности сколов попросту не соприкасаются, образовался «пузырь».

Каков принцип действия большинства скалывателей?

  1. Оптоволокно (очищенное от лака)  закладывается в аппарат и фиксируется.
  2. Ножом (в разных моделях скалывателей он может быть из твердой стали или алмазным) делается микроскопический надрез на волокне.
  3. К волокну прилагается усилие, и, благодаря ему, волокно раскалывается в месте надреза (в идеале).

На практике один из самых неприятных моментов работы с устройством — это когда волокно ломается вовсе не в месте надреза, т.е. портится. Особенно часто такие фокусы скалыватель начинает выкидывать в холодной и влажной среде.

Вот пример хорошего скалывателя, который идет в комплекте со сварочным аппаратом для оптоволокна Signal Fire AI-7.

Signal Fire AI-7.

Как оценивается качество скалывателя?

При выборе устройства учитывается:

  • насколько приближен к перпендикуляру угол скола;
  • насколько ровную поверхность скола дает скалыватель;
  • каков процент сломанных волокон;
  • каков ресурс работы устройства;
  • насколько продумана эргономика устройства.

Конечно же, скалыватели бывают разные — дешевые и дорогие, китайские и японские, специализированные и давно устаревшие. Общий совет при выборе:

Не экономьте на скалывателе, если есть возможность.

Потому что хороший скол — это 50% работы и успеха пайщика, и чем меньше будет брака, чем удобнее продуманы операции на скалывателе — тем быстрее будет идти работа.

Порядок действий при скалывании оптоволокна

  • Зачищаем волокно от лака.
  • Тщательно протираем салфеткой, смоченной спиртом — проворачивая вокруг оптоволокна, чтобы снять всю грязь.
  • Аккуратно закладываем в канавку скалывателя по линейке. Важно его при этом не выпачкать. Граница, где заканчивается лаковое покрытие и начинается оголенное оптоволокно, должна приходиться на определенную цифру на линейке. Какую именно цифру — зависит от модели вашего сварочного аппарата, какая длина очищенного оптоволокна для него оптимальна. Если вы ее превысите — волокно нормально сварится, однако гильза КДЗС не будет полностью покрывать оголенную часть. Если же оно окажется слишком коротким, аппарат не спаяет концы.
  • Скалываем волокно (в зависимости от модели аппарата — нажимаем на крышку или производим другое действие).
  • Осторожно достаем волокно (если оно не сломалось в процессе скалывания) и ни в коем случае ничего не касаясь сколом, не цепляясь за бортики канавки ни в скалывателе, ни в сварочном аппарате, укладываем в сварочник.

Главное правило работы с волокном — чистота и еще раз чистота.

Если вы все-таки чего-то коснулись, можно попытаться очистить волокно — заново протереть салфеткой, а поверхностью скола «потыкать» в спиртовую салфетку (осторожно, чтобы не сломать волокно), после этого — в сухую. Но это не дает гарантии полного очищения.

А вот как выглядит на экране сварочного аппарата волокно с пылинкой на сколе и загрязненной поверхностью:

Правила безопасности

Сломавшиеся и сколотые кусочки оптоволокна — вовсе не безобидный мусор. Мелкие стеклянные «иголочки», попав в еду, могут повредить желудок или пищевод. Попав под кожу — очень сложно удаляются, так как крошатся при попытке их вытащить. Если же они попадут в кровоток — теоретически могут вызвать опасные последствия, добравшись до сердца. Поэтому всегда собирайте отходы из скалывателя либо в специальный контейнер, либо в любую другую емкость и ни в коем случае не выбрасывайте их просто так. По этой же причине нельзя есть во время работы.

Сварочный аппарат и сварка

Сварочный аппарат для оптических волокон — это сложное высокоточное устройство, полностью выполняющее процесс юстировки и сварки волокон.

О видах сварочных аппаратов можно написать отдельную большую статью. Если вкратце, то основная часть моделей на рынке представлена японскими (Fujikura, Sumitomo) и китайскими (Jilong, к примеру) разработками. Японские лучше, но существенно дороже. В принципе, если перед вами не стоит задача варить особо важные магистрали — вполне можно обойтись и хорошим китайским сварочником.

Вариант подороже, японский Fujikura FSM-60S:

Вариант подешевле, китайский Signal Fire AI-7. Устройство с хорошими показателями быстрого нагрева, постороено на новой технологии центрирования ядра, имеет в своем арсенале шесть сервоприводов и автофокус. Данный сварочный аппарат отвечает всем стандартам сращивания оптоволоконного кабеля известным на данный момент:

Порядок сварки в сварочном аппарате:

  1. Порядок сварки в сварочном аппарате: Сколотые очищенные волокна укладываются в специальные канавки и фиксируются зажимами. Гильза КДЗС надевается на волокна заранее.
  2. Аппарат начинает передвигать волокна по направлению друг к другу до тех пор, пока не зафиксирует их в своей оптической системе.
  3. Устройство подает на концы волокон короткий разряд, очищая от случайно попавшей пыли. Но если на концах сколов — жирные отпечатки пальцев или грязь, которую так просто не сдуешь, она только запекается и окончательно портит скол.
  4. Далее сварочный аппарат сводит волокна для окончательной сварки — по трем координатам, с нарастающей точностью. Если на этом этапе умное устройство обнаружит неровность сколов или еще что-то, что помешает их качественно сварить — процесс сварки остановится, на экране сварочного аппарата появится соответствующее сообщение.
  5. Если же все нормально, подается окончательный разряд, сколы оплавляются, и аппарат во время этого придвигает их уже вплотную друг к другу. Все, волокна спаяны.
  6. Далее сварочный аппарат оценивает качество сварки по изображению места стыка под микроскопами оптической системы, и на просвет определяет затухание. Следующая стадия проверки — на прочность, устройство при этом пытается развести только что сваренные волокна в стороны. Однако многие эту функцию отключают, боясь что не остывшая до конца сварка может испортиться.
  7. Пайщик достает спаянные волокна, надвигает гильзу КДЗС, закрывая место сварки и прилегающее оголенное оптоволокно, и кладет гильзу в печку для усаживания.
  8. После извлечения из печки гильза выкладывается на специальную полочку, чтобы остыть. В горячем виде ее нельзя располагать в кассете — есть риск сломать оптоволокно, т.к. защищающая его гильза еще мягкая. Кроме того, класть ее куда-то кроме специально предназначенной полочки тоже нельзя — горячий пластик может прилипнуть. Именно поэтому и забывать ее в печке тоже нельзя — прилипнет. Вынимать гильзу из печки нужно сразу после сигнала таймера.
На фото — сваренное волокно. Хорошо видна точка, в которой преломляется свет — место сварки.

Важно помнить:

И сварочный аппарат, и скалыватель — дорогие и сложные устройства. Да, пайщики оптоволокна работают в самых разных условиях — в канализации, на чердаках, в поле, в мороз и дождь. Но при этом нужно беречь технику от падения и ударов. Ведь не зря их чемоданчики для переноса выложены изнутри пенопластом или толстой мягкой тканью. Фирма-производитель легко определит, перестало ли устройство работать «само» или этому предшествовало падение или удар. В последнем случае гарантии не будет.

Поэтому при работе всегда проверяйте — надежно ли стоит устройство? Надежно ли стоит стол, на котором расположен сварочник или скалыватель? И т.д. Собственно, зная цену хорошего сварочного аппарата, это даже нельзя назвать фанатизмом.

Важно также регулярно проводить техническое обслуживание устройств (многие профилактические действия предусмотрены в самом аппарате и выполняются по инструкции), а не использовать до последнего.

источник

Что такое волоконная оптика? - Как работает волоконная оптика

Волоконная оптика (оптические волокна) представляют собой длинные тонкие нити из очень чистого стекла диаметром с человеческий волос. Они скомпонованы в пучки, называемые оптическими кабелями , и используются для передачи световых сигналов на большие расстояния.

Если вы внимательно посмотрите на отдельное оптическое волокно, вы увидите, что оно состоит из следующих частей:

Объявление

  • Сердечник - Тонкий стеклянный центр волокна, по которому распространяется свет
  • Оболочка - Внешний оптический материал, окружающий сердцевину, который отражает свет обратно в сердцевину
  • Буферное покрытие - Пластиковое покрытие, защищающее волокно от повреждения и влага

Сотни или тысячи этих оптических волокон скомпонованы в жгуты в оптических кабелях.Жгуты защищены внешней оболочкой кабеля, которая называется оболочкой .

Оптические волокна бывают двух типов:

  • Одномодовые волокна
  • Многомодовые волокна

См. Tpub.com: Mode Theory для хорошего объяснения.

Одномодовые волокна имеют небольшие сердцевины (около 3,5 x 10 -4 дюймов или 9 микрон в диаметре) и пропускают инфракрасный лазерный свет (длина волны = 1300–1550 нанометров). Многомодовые волокна имеют сердечники большего размера (около 2,5 x 10 -3 дюймов или 62,5 микрон в диаметре) и пропускают инфракрасный свет (длина волны = 850–1300 нм) от светодиодов (светодиодов).

Некоторые оптические волокна могут быть изготовлены из пластика . Эти волокна имеют большую сердцевину (0,04 дюйма или 1 мм в диаметре) и пропускают видимый красный свет (длина волны = 650 нм) от светодиодов.

Давайте посмотрим, как работает оптическое волокно.

.

Как работает волоконная оптика?

Криса Вудфорда. Последнее изменение: 26 сентября 2018 г.

Римляне, должно быть, были особенно довольны собой в тот день, когда они изобрели свинцовые трубки около 2000 лет назад. Наконец они у них был простой способ переносить воду из одного места в другое. Представьте, что бы они сделали из современных оптоволоконных кабелей - «труб», которые может передавать телефонные звонки и электронную почту по всему миру за седьмую часть второй!

Фото: Световая труба: волоконная оптика означает направление световых лучей по тонким пластиковым или стеклянным нитям, заставляя их многократно отражаться от стен.Это смоделированное изображение. Обратите внимание, что в некоторых странах, включая Великобританию, волоконная оптика пишется «волоконная оптика». Если вы ищете информацию в Интернете, она всегда стоит поискать оба варианта написания.

Что такое волоконная оптика?

Мы привыкли к тому, что информация путешествует по-разному. Когда мы говорим по стационарному телефону, проводной кабель несет звуки нашего голоса в розетку в стене, где другой кабель берет на местную телефонную станцию.Мобильные телефоны работают иначе способ: они отправляют и получают информацию с помощью невидимых радиоволны - а Технология называется беспроводной, потому что в ней не используются кабели. Волоконная оптика работает третий способ. Он отправляет информацию, закодированную в луче света вниз по стеклянной или пластиковой трубе. Первоначально он был разработан для эндоскопов в 1950-х годов, чтобы помочь врачам заглянуть внутрь человеческого тела без необходимости сначала разрежьте его. В 1960-х инженеры нашли способ использовать та же технология для передачи телефонных звонков со скоростью света (обычно это 186 000 миль или 300 000 км в секунду в вакууме, но замедляется примерно до двух третей от этой скорости в оптоволоконном кабеле).

Оптическая техника

Фото: Отрезок 144-жильного оптоволоконного кабеля. Каждая прядь сделана из оптически чистого стекла и тоньше человеческого волоса. Изображение Тех. Сержант. Брайан Дэвидсон, любезно предоставлено ВВС США.

Оптоволоконный кабель состоит из невероятно тонких жил. из стекла или пластика, известного как оптические волокна; один кабель может иметь как минимум два прядей или целых несколько сотен. Каждая прядь меньше в десять раз толщиной с человеческий волос и может принимать около 25000 телефонных звонков, Таким образом, весь оптоволоконный кабель может легко передать несколько миллионов вызовов.

Волоконно-оптические кабели передают информацию между двумя местами, используя полностью оптическая (световая) технология. Предположим, вы хотели отправить информация с вашего компьютера на дом друга по улице с помощью волоконной оптики. Вы можете подключить свой компьютер к лазеру, который преобразовал бы электрическую информацию из компьютера в серию световые импульсы. Затем вы запускаете лазер по оптоволоконному кабелю. После прохождения по кабелю световые лучи выходили на другой конец.Вашему другу понадобится фотоэлемент (светочувствительный компонент), чтобы превратить импульсы света обратно в электрическую информацию его или ее компьютер мог понять. Так что весь аппарат будет как действительно изящная высокотехнологичная версия телефона, который можно Сделайте из двух банок для печеной фасоли и отрезка веревки!

Как работает волоконная оптика

На фото: волоконно-оптические кабели достаточно тонкие, чтобы их можно было изгибать, поэтому световые сигналы проходят внутрь по изогнутым путям.Фотография любезно предоставлена ​​Исследовательским центром Гленна НАСА. (НАСА-GRC).

Художественное произведение: Полное внутреннее отражение удерживает световые лучи от внутренней части оптоволоконного кабеля.

Свет распространяется по оптоволоконному кабелю по многократно отскакивая от стен. Каждый крошечный фотон (частица света) прыгает по трубе, как бобслей, спускающийся по ледяной трассе. Теперь ваша очередь может ожидать луч света, путешествовать по прозрачной стеклянной трубе, чтобы просто просочиться через края.Но если свет падает на стекло под очень малым углом (менее 42 градусов), он снова отражается внутрь - как будто стекло на самом деле зеркало. это явление называется полным внутренним отражением. Это одна из вещей, которая сохраняет свет внутри трубы.

Еще одна вещь, которая удерживает свет в трубе, - это структура кабель, который состоит из двух отдельных частей. Основная часть кабель - в середине - называется core , и это бит свет проходит сквозь.Снаружи ядра обернут еще один слой стекла называется облицовкой . Работа облицовки - сохранить световые сигналы внутри активной зоны. Он может это сделать, потому что он сделан из различный вид стекла в сердцевине. (Технически облицовка имеет более низкий показатель преломления.)

Типы волоконно-оптических кабелей

Оптические волокна передают по ним световые сигналы в так называемых режимах . Звучит технически, но это просто означает разные способы путешествовать: мода - это просто путь, по которому световой луч следует вниз по волокну.Один режим чтобы пройти прямо по середине волокна. Другой - отразите волокно под небольшим углом. Другие режимы включают подпрыгивание вниз по волокну под другими углами, более или менее крутыми.

Иллюстрации: Вверху: свет по-разному распространяется в одномодовых и многомодовых волокнах. Внизу: внутри типичного одномодового оптоволоконного кабеля (не в масштабе). Тонкая сердцевина окружена оболочкой, диаметр которой примерно в десять раз больше, внешним пластиковым покрытием (примерно в два раза больше диаметра оболочки), некоторыми укрепляющими волокнами, изготовленными из жесткого материала, такого как кевлар®, с внешней защитной оболочкой.

Самый простой тип оптического волокна называется одномодовое . Он имеет очень тонкую сердцевину размером около 5-10 микрон (миллионные доли метр) в диаметре. В одномодовом волокне все сигналы проходят прямо посередине, не отскакивая от краев (желтая линия в диаграмму). Кабельное телевидение, Интернет и телефонные сигналы обычно передаются по одномодовым волокна, собранные вместе в огромный пучок. Такие кабели могут отправлять информация за 100 км (60 миль).

Другой тип оптоволоконного кабеля называется многорежимный . Каждое оптическое волокно в многомодовый кабель о 10 раз больше одного в одномодовом кабеле. Это означает, что световые лучи могут проходить через ядро, следуя Разновидность разные пути (желтые, оранжевые, синие и голубые линии) - другими словами, в несколько разных режимов. Многорежимные кабели могут отправлять только информацию на относительно короткие расстояния и используются (среди прочего) для соединить компьютерные сети вместе.

Еще более толстые волокна используются в медицинском инструменте под названием гастроскоп (разновидность эндоскопа), врачи протыкают кому-то горло, чтобы обнаружить внутри него болезни их желудок. Гастроскоп - это толстый оптоволоконный кабель, состоящий из многих оптических волокон. На верхнем конце гастроскопа есть окуляр и лампа. Лампа направляет свой свет на одну часть кабеля в живот пациента. Когда свет достигает желудка, он отражается стенки желудка в линзу внизу кабеля.Затем он возвращается в другую часть кабель в окуляр врача. Остальные типы эндоскопов работают так же способ и может использоваться для осмотра различных частей тела. Также есть промышленный вариант инструмента, называемый фиброскопом, который можно использовать исследовать такие вещи, как недоступные части оборудования в самолете двигатели.

Применение для волоконной оптики

Стрельба по трубе кажется изящной научной партийный трюк, и вы можете не подумать, что у что-то такое.Но так же, как электричество может привести в действие многие типы машин, лучи света могут нести многие типы информация, поэтому они могут помочь нам во многих отношениях. Мы просто не замечаем насколько обычными стали оптоволоконные кабели, потому что лазерные сигналы, которые они несут, мерцают далеко под нашими ногами, глубоко под офисными этажами и улицами города. Технологии, использующие это - компьютерные сети, радиовещание, медицинское сканирование и военная техника (назвать всего четыре) - причем незаметно.

Фото: Работа с волоконно-оптическими кабелями.Изображение Натанаэля Каллона, любезно предоставлено ВВС США.

Компьютерные сети

Волоконно-оптические кабели в настоящее время являются основным средством передачи информации на большие расстояния, поскольку у них есть три очень больших преимущества перед медными кабелями старого образца:

  • Меньшее затухание : (потеря сигнала) Информация распространяется примерно в 10 раз дальше, прежде чем ей потребуется усиление, что делает оптоволоконные сети более простыми и дешевыми в эксплуатации и обслуживании.
  • Без помех : В отличие от медных кабелей, между оптическими волокнами нет «перекрестных помех» (электромагнитных помех), поэтому они передают информацию более надежно и с лучшим качеством сигнала.
  • Более высокая полоса пропускания : Как мы уже видели, оптоволоконные кабели могут передавать гораздо больше данных, чем медные кабели того же диаметра.

Вы сейчас читаете эти слова благодаря Интернет. Вы наверняка наткнулись на эту страницу с поисковой системой как Google, который управляет всемирной сетью гигантских центров обработки данных соединены оптоволоконными кабелями большой емкости (и сейчас пытается развернуть быстрые оптоволоконные соединения для всех остальных). Нажав на ссылку на поисковую систему, вы загрузили эту веб-страницу из моей сети сервер и мои слова почти всю дорогу до вас дошли волоконно-оптические кабели. Действительно, если вы используете быстрый оптоволоконный широкополосные, оптоволоконные кабели делают почти всю работу каждый раз вы выходите в интернет.При большинстве высокоскоростных широкополосных подключений только последний этап информационного пути (так называемый "последний миля "от оптоволоконного шкафа на улице до дома или квартира) подразумевает старые провода. Это оптоволоконные кабели, не медные провода, которые теперь несут "лайки" и "твиты" под наши улицы, через все большее количество сельских районов, и даже глубоко под океанами, соединяющими континенты. Если вы представите себе Интернет (и Всемирная паутина, которая использует его) как глобальная паутина, скрепляющие ее нити - оптоволоконные кабели; по некоторым оценкам, оптоволоконные кабели покрывают более 99 процентов от общего пробега Интернета, и переносят более 99 процентов всего международного коммуникационного трафика.

Чем быстрее люди получают доступ в Интернет, тем больше они могут - и будут - делать в сети. Прибытие из широкополосный Интернет сделал возможным явление облачных вычислений (где люди хранят и обрабатывают свои данные удаленно, используя онлайн вместо домашнего или рабочего ПК в собственном помещении). В примерно так же стабильное развертывание широкополосного оптоволокна (обычно В 5–10 раз быстрее, чем обычный широкополосный DSL, который использует обычные телефонные линии) сделает его более привычным для люди занимаются такими вещами, как потоковая передача фильмов в Интернете вместо просмотра телетрансляция или прокат DVD.С большей емкостью волокна и быстрее связи, мы будем отслеживать и контролировать многие другие аспекты наша жизнь в сети с использованием так называемого Интернета вещей.

Но не только общедоступные интернет-данные течет по волоконно-оптическим линиям. Когда-то компьютеры были подключены к на большие расстояния по телефонным линиям или (на короткие расстояния) по меди Кабели Ethernet, но все чаще предпочтительнее оптоволоконные кабели метод объединения компьютеров в сеть, потому что они очень доступны, безопасны, надежны и имеют гораздо большую вместимость.Вместо того, чтобы связывать офисов через общедоступный Интернет, это вполне возможно для компания для создания собственной оптоволоконной сети (если она может себе это позволить) или (что более вероятно) купить место в частной оптоволоконной сети. Многие частные компьютерные сети работают на так называемом темном волокне , которое звучит немного зловеще, но это просто неиспользованная емкость другого сеть (оптические волокна ожидают включения).

Интернет был продуман так, чтобы вид информации для любого использования; это не ограничивается ношением компьютерные данные.Когда-то по телефонным линиям выходил Интернет, теперь же вместо этого через волоконно-оптический Интернет можно звонить по телефону (и Skype). Там, где телефонные звонки когда-то направлялись по сложной мозаике медные кабели и микроволновые линии между городами, самые дальние теперь звонки направляются по оптоволоконным линиям. С 1980-х гг. Было уложено огромное количество волокна; оценки сильно различаются, но считается, что общая мировая длина составляет несколько сотен миллионов километров (достаточно, чтобы пересечь Соединенные Штаты примерно миллион раз).В середине 2000-х было подсчитано, что до 98 процентов этого количества было неиспользованным «темным волокном»; Сегодня, несмотря на то, что используется гораздо больше волокон, все еще считается, что большинство сетей содержат от одной трети до половины темного волокна.

Фото: Строительство оптоволоконных сетей обходится дорого (в основном потому, что рытье улиц стоит очень дорого). Поскольку затраты на рабочую силу и строительство намного дороже, чем сам кабель, многие сетевые операторы сознательно прокладывают гораздо больше кабеля, чем им нужно в настоящее время.Изображение Криса Уиллиса любезно предоставлено ВВС США.

Радиовещание

Еще в начале 20 века радио и Телевещание родилось из относительно простой идеи: это было технически довольно легко снимать электромагнитные волны через воздух от одного передатчика (на радиостанции) до тысяч антенн в домах людей. В наши дни, когда радио все еще работает в воздухе, мы с такой же вероятностью ТВ через оптоволоконный кабель.

компании кабельного телевидения первыми перешли от с 1950-х гг. первоначально использовались коаксиальные кабели (медные кабели с металлической оболочкой, обернутой вокруг них для предотвращения перекрестных помех), по которым передавалось лишь небольшое количество аналоговых телевизионных сигналов.По мере того, как все больше и больше людей подключались к кабелю, и сети начали предлагать больший выбор каналов и программ, кабельные операторы сочли необходимо перейти с коаксиальных кабелей на оптоволокно и с аналогово-цифровое вещание. К счастью, ученые уже выясняли, как это могло быть возможно; еще в 1966 году, Чарльз Као (и его коллега Джордж Хокхэм) посчитали, доказав, как одиночный оптоволоконный кабель может несут достаточно данных для нескольких сотен телеканалов (или нескольких сотен тысяч телефонных звонков).Это был лишь вопрос времени, когда мир кабельного телевидения обратил на это внимание - и «новаторское достижение» Као было должным образом признано когда ему была присуждена Нобелевская премия по физике 2009 года.

Помимо гораздо большей емкости, оптический волокна меньше страдают от помех, поэтому обеспечивают лучший сигнал (рисунок и звук) качество; им нужно меньше усиления для усиления сигналов, поэтому они путешествуют на большие расстояния; и они вообще дороже эффективный. В будущем оптоволоконный широкополосный доступ может стать большинство из нас смотрит телевизор, возможно, через такие системы, как IPTV (телевидение по Интернет-протоколу), в которых используется Стандартный способ передачи данных в Интернете ("коммутация пакетов") в обслуживать телепрограммы и фильмы по запросу.Пока медный телефон линия по-прежнему является основным информационным маршрутом в дома многих людей, в будущем нашим основным соединением с миром будет высокоскоростной оптоволоконный кабель. кабель, несущий любую информацию.

Медицина

Медицинские гаджеты, которые могут помочь врачам сориентироваться внутри наших тел, не разрезая их, были первыми собственными применение волоконной оптики более полувека назад. Cегодня, гастроскопы (как их называют) так же важны, как и никогда, но волоконная оптика продолжает порождать важные новые формы медицинское сканирование и диагностика.

Одной из последних разработок называется лаборатория по волокна , и включает в себя вставку тонких волоконно-оптических кабелей с встроенные датчики в тело пациента. Эти виды волокон аналогичны по масштабу кабелям связи и тоньше относительно короткие световоды, используемые в гастроскопах. Как они работай? Через них проходит свет от лампы или лазера через деталь. тела, который доктор хочет изучить. Когда свет проникает сквозь волокна, тело пациента меняет свои свойства в определенных способ (очень незначительное изменение интенсивности или длины волны света, возможно).Измеряя изменение света (используя методы например, интерферометрия), инструмент, прикрепленный к другому концу волокно может измерить некоторые важные аспекты того, как тело пациента работает, например, их температура, артериальное давление, pH клеток, или наличие лекарств в их кровотоке. Другими словами, вместо того, чтобы просто использовать свет, чтобы заглянуть внутрь тела пациента, это Тип волоконно-оптического кабеля вместо этого использует свет для его измерения или измерения.

Военный

Фото: Волоконная оптика на поле боя.У этой усовершенствованной оптоволоконной управляемой ракеты (EFOG-M) в носу установлена ​​инфракрасная оптоволоконная камера, чтобы стрелок, стреляющий по ней, мог видеть, куда она движется. Изображение любезно предоставлено Армия Соединенных Штатов.

Легко представить пользователей Интернета, связанных вместе гигантскими паутинами оптоволоконных кабелей; это гораздо менее очевидно что высокотехнологичные вооруженные силы мира связаны таким же образом. Волоконно-оптические кабели недорогие, тонкие, легкие, емкие, устойчивы к атакам и чрезвычайно безопасны, поэтому предлагают идеальные способы подключения военных баз и других объектов, таких как ракетные стартовые площадки и радиолокационные станции.Поскольку они не переносят электрические сигналы, они не излучают электромагнитные излучение, которое может обнаружить противник, и они устойчивы к электромагнитные помехи (в том числе систематическое «глушение» противника атаки). Еще одно преимущество - относительно легкий вес волокна. кабели по сравнению с традиционными проводами из громоздких и дорогих медь металлическая. Танки, военные самолеты и вертолеты есть все постепенно переходят с металлических кабелей на оптоволоконные. Частично это вопрос снижения затрат и экономии веса (оптоволоконные кабели весят около 90 процентов меньше, чем у сопоставимых медных кабелей типа «витая пара»).Но это также повышает надежность; например, в отличие от традиционных кабелей на самолете, которые должны быть тщательно экранированы (изолированы) для защиты им против ударов молнии, оптические волокна полностью невосприимчивы к такой проблеме.

Кто изобрел волоконную оптику?

  • 1840-е годы: швейцарский физик Даниэль Колладон (1802–1893) обнаружил, что может светить через водопроводную трубу. Вода несла свет внутреннее отражение.
  • 1870: Ирландский физик Джон Тиндалл (1820–1893) продемонстрировал внутреннюю рефлексию в Лондонском Королевском обществе.Он посветил в кувшин с водой. Когда он налил немного воды из кувшина, свет изогнулся по пути воды. Эта идея "изгиба" свет "именно то, что происходит в волоконной оптике. Хотя Colladon Истинный дедушка волоконной оптики, Тиндаль часто заслуживает уважения.
  • 1930-е годы: Heinrich Lamm и Walter Gerlach , два Немецкие студенты пытались использовать световые трубки для изготовления гастроскопа - инструмент для заглядывания в чей-то желудок.
  • 1950-е: в Лондоне, Англия, индийский физик. Нариндер Капани (1926–) и британский физик Гарольд Хопкинс (1918–1994) удалось отправить простую картинку по световой трубе, сделанной из тысяч стекловолокон. После публикации множества научных работ Капани заработал репутацию «отец волоконной оптики».
  • 1957: Трое американских ученых из Мичиганского университета, Лоуренс Кертисс , Бэзил Хиршовиц и Уилбур Петерс, успешно использовали оптоволоконную технологию для создания первого в мире гастроскопа.
  • 1960-е годы: американский физик китайского происхождения Чарльз Као (1933–2018) и его коллега Джордж Хокхэм осознали, что нечистое стекло бесполезно для волоконной оптики дальнего действия. Као предположил, что оптоволоконный кабель, сделанный из очень чистого стекла, сможет передавать телефонные сигналы на гораздо большие расстояния, и был удостоен награды Нобелевская премия по физике 2009 г. за это новаторское открытие.
  • 1960-е: исследователи Corning Glass Company создали первый оптоволоконный кабель, способный передавать телефонные сигналы.
  • ~ 1970: Дональд Кек и его коллеги из Corning нашли способы отправлять сигналы гораздо дальше (с меньшими потерями), что привело к разработка первых оптических волокон с низкими потерями.
  • 1977: Первый оптоволоконный телефонный кабель был проложен между Лонг-Бич и Артезией, Калифорния.
  • 1988: Первый трансатлантический оптоволоконный телефонный кабель TAT8 был проложен между США, Францией и Великобританией.
  • 2019: По данным TeleGeography, в настоящее время существует около 378 подводных волоконно-оптических кабелей. (несущие коммуникации под мировым океаном), протяженностью в общей сложности 1.2 миллиона км (0,7 миллиона миль).
.

Как производятся оптические волокна? - Как работает волоконная оптика

Теперь, когда мы знаем, как работают оптоволоконные системы и почему они полезны - как они их создают? Оптические волокна изготовлены из особо чистого оптического стекла . Мы думаем о стеклянном окне как о прозрачном, но чем толще становится стекло, тем менее прозрачным оно становится из-за примесей в стекле. Однако стекло в оптическом волокне содержит гораздо меньше примесей, чем стекло оконного стекла. Одна компания описывает качество стекла следующим образом: если бы вы были на вершине океана, покрытого стекловолокном с твердой сердцевиной, вы могли бы четко видеть дно.

Для изготовления оптического волокна необходимо выполнить следующие шаги:

Объявление

  1. Изготовление преформы стеклянного цилиндра
  2. Вытягивание волокон из преформы
  3. Тестирование волокон

Изготовление заготовки преформы

Стекло для преформы производится с помощью процесса, называемого модифицированным химическим осаждением из паровой фазы (MCVD).

В MCVD кислород барботируется растворами хлорида кремния (SiCl4), хлорида германия (GeCl4) и / или других химикатов. Точная смесь определяет различные физические и оптические свойства (показатель преломления, коэффициент расширения, температуру плавления и т. Д.). Затем пары газа направляются внутрь трубы из синтетического диоксида кремния или из кварца (оболочка) в специальном токарном станке . Когда токарный станок вращается, резак перемещается вверх и вниз по внешней стороне трубы.Сильный жар от горелки вызывает две вещи:

  • Кремний и германий реагируют с кислородом, образуя диоксид кремния (SiO2) и диоксид германия (GeO2).
  • Диоксид кремния и диоксид германия осаждаются внутри трубки и сливаются вместе, образуя стекло.

Токарный станок непрерывно вращается для получения ровного покрытия и однородной заготовки. Чистота стекла поддерживается за счет использования коррозионно-стойкого пластика в системе подачи газа (клапанные блоки, трубы, уплотнения) и точного контроля потока и состава смеси.Процесс изготовления заготовки преформы автоматизирован и занимает несколько часов. После охлаждения заготовки преформы ее проверяют на качество (показатель преломления).

Вытяжка волокон из заготовки преформы

После испытания заготовки преформы ее загружают в вытяжную колонну .

Заготовку опускают в графитовую печь (от 3452 до 3992 градусов по Фаренгейту или от 1900 до 2200 градусов по Цельсию), и наконечник оплавляется до тех пор, пока расплавленный шар не падает под действием силы тяжести.При падении охлаждается и образует нить.

Оператор продевает прядь через серию стаканов для нанесения покрытий (буферных покрытий) и печи для отверждения в ультрафиолетовом свете на катушку, управляемую трактором. Механизм трактора медленно вытягивает волокно из нагретой заготовки преформы и точно контролируется с помощью лазерного микрометра для измерения диаметра волокна и передачи информации обратно в механизм трактора. Волокна вытягиваются из заготовки со скоростью от 33 до 66 футов / с (от 10 до 20 м / с), и готовый продукт наматывается на катушку.Катушки нередко содержат оптическое волокно длиной более 1,4 мили (2,2 км).

Тестирование готового оптического волокна

Готовое оптическое волокно испытывается на следующие характеристики:

  • Предел прочности на разрыв - Должен выдерживать 100000 фунтов / дюйм 2 или более
  • Профиль показателя преломления - Определить числовую апертуру, а также экран для оптических дефектов
  • Геометрия волокна - Диаметр сердцевины, размеры оболочки и диаметр покрытия однородный
  • Затухание - Определите степень, в которой световые сигналы различных длин волн ухудшаются на расстоянии
  • Пропускная способность информации (полоса пропускания) - Количество сигналов, которые могут передаваться за один раз (многомодовые волокна)
  • Хроматический дисперсия - распространение света различных длин волн через жилу (важно для полосы пропускания)
  • Диапазон рабочих температур / влажности
  • Температурная зависимость затухания
  • Способность проводить свет под водой - Важно для подводных кабелей

После того, как волокна прошли контроль качества, они продаются телефонным компаниям, кабельным компаниям и поставщикам сетей.Многие компании в настоящее время заменяют свои старые системы на основе медных проводов новыми системами на основе оптоволокна, чтобы повысить скорость, емкость и четкость.

.

A Волоконно-оптическая релейная система - Принцип работы волоконной оптики

Чтобы понять, как оптические волокна используются в системах связи, давайте рассмотрим пример из фильма или документального фильма о Второй мировой войне, где два военно-морских корабля во флоте должны общаться друг с другом, сохраняя радиомолчание, или в штормовом море. Один корабль подъезжает к другому. Капитан одного корабля отправляет сообщение матросу на палубе. Моряк переводит сообщение на азбуку Морзе (точки и тире) и использует сигнальный свет (прожектор с жалюзи на нем), чтобы отправить сообщение другому кораблю.Матрос на палубе другого корабля видит сообщение азбуки Морзе, декодирует его на английский и отправляет сообщение капитану.

А теперь представьте, что вы делаете это, когда корабли находятся по обе стороны океана, разделенные тысячами миль, и у вас есть волоконно-оптическая система связи между двумя кораблями. В состав волоконно-оптических релейных систем входят:

Объявление

  • Передатчик - Создает и кодирует световые сигналы
  • Оптоволокно - Проводит световые сигналы на расстоянии
  • Оптический регенератор - Может потребоваться для усиления светового сигнала (на больших расстояниях)
  • Оптический приемник - принимает и декодирует световые сигналы

Передатчик

Передатчик похож на матроса на палубе отправляющего корабля.Он принимает и направляет оптическое устройство, чтобы включить и выключить свет в правильной последовательности, тем самым генерируя световой сигнал.

Передатчик физически расположен близко к оптическому волокну и может даже иметь линзу для фокусировки света в оптоволокно. У лазеров больше мощности, чем у светодиодов, но они больше меняются при изменении температуры и дороже. Наиболее распространенные длины волн световых сигналов - 850 нм, 1300 нм и 1550 нм (инфракрасная, невидимая части спектра).

Оптический регенератор

Как упоминалось выше, некоторые потери сигнала возникают, когда свет передается по оптоволокну, особенно на большие расстояния (более полумили или около 1 км), например, с помощью подводных кабелей. Следовательно, один или несколько оптических регенераторов соединены вдоль кабеля для усиления ухудшенных световых сигналов.

Оптический регенератор состоит из световодов со специальным покрытием (легирование , ).Легированная часть «накачивается» лазером. Когда ухудшенный сигнал поступает на легированное покрытие, энергия лазера позволяет легированным молекулам самим становиться лазерами. Затем легированные молекулы излучают новый, более сильный световой сигнал с теми же характеристиками, что и входящий слабый световой сигнал. По сути, регенератор - это лазерный усилитель входящего сигнала.

Оптический приемник

Оптический приемник похож на матроса на палубе принимающего судна.Он принимает поступающие цифровые световые сигналы, декодирует их и отправляет электрический сигнал на компьютер, телевизор или телефон другого пользователя (принимающий капитана судна). Приемник использует фотоэлемент или фотодиод для обнаружения света.

.

Смотрите также